Willkommen Welcome Bienvenue

Evaluating landfill aftercare strategies: a lifecycle assessment approach

Landfill Aftercare Forum, Birmingham, 9th June 2016

David Turner

Co-authors: Richard Beaven & Nick Woodman, University of Southampton

Introduction Landfill Aftercare – key issues

- Landfills have a significant pollution potential & may contribute to a range of environmental impacts¹
- Typical landfill management leads to aftercare timescales of 100s - 1000s years before FSQ^{2,3}
- Unresolved post-landfill closure issues:
 - Uncertain funding⁴
 - Possible loss of active control systems for a period of time
 - Burden & impact on future generations
- ¹ Christensen *et al.*, 2011
- ² Knox, 1990

³ Knox *et al.*, 2005

⁴ Beaven et al., 2014

Introduction Life cycle assessment (LCA)

- Well-established, standardised methodology (ISO 14040 & 14044)
- Accounts for all resource use & emissions during complete life cycle
- Aggregates emissions into impact categories
- Impacts can be normalised to person equivalents (PE)

Introduction Life cycle assessment (LCA)

- LCA has been extensively applied to evaluate landfill^{e.g. 1,2,3}
- Most previous LCA studies of landfills use 100 year timeframe^{e.g. 1,4,5}
- Existing LCA tools (e.g. WRATE & EASETECH) unsuitable for modelling the effect of active control loss on landfill impacts
- No previous LCA studies to evaluate the effect of active control loss on the overall impacts of landfilling

- ¹ Damgaard et al., 2011 ⁴ Manfredi & Christensen, 2009
- ² Xing *et al.*, 2013
- ³ Turner *et al.*, 2016

Introduction Goal & scope of the work

Goal

To evaluate the potential impacts of leachate emissions from landfill sites operated with different aftercare strategies, taking into account the effects of potential active control loss

Purpose

- 1. To investigate whether LCA can be used to improve our understanding of the long term impacts of landfilling
- 2. To develop understanding of potential impact of active control loss

Scope ('functional unit')

- Leachate emissions over a 10,000 year time horizon
- Completed non-hazardous MSW landfill site of 10,000 m² x 20 m

Method

Integrated solute flow model & LCA approach

Schematic of integrated solute flow model and LCA approach

Impact categories:

HTc, carcinogenic human toxicity; HTnc, non-carcinogenic human toxicity; ET, ecotoxicity;

EUf, freshwater eutrophication; EUm, marine eutrophication

Method Mechanistic water flow & solute movement model

Schematic of the mechanistic model under conditions of:

- a) active control (i.e. leachate collected for treatment)
- b) active control loss (i.e. leachate not collected for treatment) & where $Q_i > Q_g \rightarrow$ overtopping

Empa

Aaterials Science and Technology

Method

Integrated solute flow model & LCA approach

Schematic of integrated solute flow model and LCA approach

Impact categories:

HTc, carcinogenic human toxicity; HTnc, non-carcinogenic human toxicity; ET, ecotoxicity;

EUf, freshwater eutrophication; EUm, marine eutrophication

Method Aftercare scenarios

Description of landfill aftercare scenarios

Scenario		Description			
S1	Typical aftercare	High quality, low permeability cap			
S2	Accelerated aftercare (high permeability cap)	High permeability cap			
S3	Accelerated aftercare (30 year moisture injection)	High permeability cap; additional moisture injection during 30 year active aftercare operations period			
S4	Accelerated aftercare (60 year moisture injection)	High permeability cap; additional moisture injection during 60 year active aftercare operations period			

Model input parameter values assigned for each aftercare scenario

		Value			
Parameter	Unit	S1	S2	S3	S4
Design flow through cap	mm/a	50	250	1,000	1,000
Flow through cap at end of 'active aftercare period'	mm/a	60	250	1,000	1,000
Flow after cap has reached end of service life	mm/a	250	250	250	250
Time at end of 'active aftercare operations period'	а	30	30	30	60
Time at end of cap 'service life'	а	1,000	30	30	60

- T_F = time at which leachate no longer removed to treatment
- D = duration of period where leachate not removed

S1 Typical aftercare Mass via treatment Mass via groundwater Mass via surface water 1.0 1.0 1.0 M/M₀(-) (-) 0.8 W 0.6 W 0.4 (-) ^{0.8} W ^{0.6} W ^{0.4} 0.8 0.6 0.6 0.4 0.4 t 0 300 0.2 0.2 0.2 Tàp 1000 17 000 17 000 17 000 17 0 0 0 6 0 00 A.4 1 1 500 A.4 1 100 1000 10000 10 10 10 1000 100 100010000 1000 100 100010000 1000 D (a) $D_{(a)}$ D (a) S2 Accelerated aftercare (high permeability cap) Mass via treatment Mass via groundwater Mass via surface water

- T_F = time at which leachate no longer removed to treatment
- D = duration of period where leachate not removed

- T_F = time at which leachate no longer removed to treatment
- D = duration of period where leachate not removed

S1 Typical aftercare Mass via treatment Mass via groundwater Mass via surface water 1.0 1.0 1.0 M/M₀(-) (-) 0.8 W 0.6 W 0.4 (-) ^{0.8} W ^{0.6} W ^{0.4} 0.8 0.6 0.6 0.4 0.4 0 200 0.2 0.2 0.2 1000 17 000 17 000 17 000 17 0 0 500 0 6 0 00 A.4 1 1 1 500 A.4 100 1000 10000 10 10 10 1000 100 100010000 1000 100 100010000 1000 D (a) $D_{(a)}$ D (a)

S2 Accelerated aftercare (high permeability cap)

- T_F = time at which leachate no longer removed to treatment
- D = duration of period where leachate not removed

Mass via treatment Mass via groundwater Mass via surface water 1.0 1.0 1.0 M/M₀(-) (-) 0.8 W 0.6 W 0.4 (-) ^{0.8} W ^{0.6} W ^{0.4} 0.8 0.6 0.6 0.4 0.4 1200 0.2 0.2 0.2 \$00 1000 17 000 17 000 17 000 17 0 0 500 0 6 0 00 A.4 1 1 100 A.4 1 100 1000 10000 10 10 10 100010000 1000 100 100010000 1000 100 1000 D (a) $D_{(a)}$ D (a) S2 Accelerated aftercare (high permeability cap) Mass via treatment Mass via groundwater Mass via surface water 1.0 1.0 1.0 (-) 0.8 V 0.6 V 0.4 (-) 0.8 W 0.6 W 0.4 (-) 0.8 W 0.6 W 0.4 1000 200 0.2 0.2 0.2 *00 400 000 000 0000 7 (9) (9) 0 0 0 6 তি \$00 K 800 A.A 1 1 ¹⁰⁰ 1000₁₀₀₀₀ 100 1000 10000 10 10 10 1000 1000 100 100010000

D (a)

D (a)

S1 Typical aftercare

- T_F = time at which leachate no longer removed to treatment
- D = duration of period where leachate not removed

D (a)

- T_F = time at which leachate no longer removed to treatment
- D = duration of period where leachate not removed

S1 Typical aftercare

- T_F = time at which leachate no longer removed to treatment
- D = duration of period where leachate not removed
- PE = person equivalents

S1 Typical aftercare

- D = duration of period where leachate not removed
- PE = person equivalents

S3 Accelerated aftercare (30 year moisture addition)

Empa

Materials Science and Technology

- T_F = time at which leachate no longer removed to treatment
- D = duration of period where leachate not removed
- PE = person equivalents

S1 Typical aftercare

- T_F = time at which leachate no longer removed to treatment
- D = duration of period where leachate not removed
- PE = person equivalents

	Active control situation					
	'Best case'	'Best case'	'Worst case'	'Worst case'	Increase on	
	(PE ^a)	(PE/t)	(PE)	(PE/t)	'best case' (%)	
S1 Typical aftercare	9,530	0.060	22,560	0.14	136	
Ecotoxicity	4,390	0.027	8,080	0.051	84	
Marine eutrophication	2,640	0.017	10,600	0.066	302	
S2 Accelerated aftercare						
(high permeability cap)	6,760	0.042	20,050	0.13	197	
Ecotoxicity	3,750	0.023	7,660	0.048	104	
Marine eutrophication	630	0.004	8,590	0.054	1263	
S3 Accelerated aftercare						
(30 year moisture injection)	6,400	0.040	13,880	0.087	117	
Ecotoxicity	3,640	0.023	6,440	0.040	77	
Marine eutrophication	400	0.003	3,870	0.024	868	
S4 Accelerated aftercare						
(60 year moisture injection)	6,210	0.039	10,220	0.064	65	
Ecotoxicity	3,560	0.022	5,410	0.034	52	
Marine eutrophication	300	0.002	1,430	0.009	377	

	Active control situation					
	'Best case'	'Best case'	'Worst case'	'Worst case'	Increase on	
	(PE ^a)	(PE/t)	(PE)	(PE/t)	'best case' (%)	
S1 Typical aftercare	9,530	0.060	22,560	0.14	136	
Ecotoxicity	4,390	0.027	8,080	0.051	84	
Marine eutrophication	2,640	0.017	10,600	0.066	302	
S2 Accelerated aftercare						
(high permeability cap)	6,760	0.042	20,050	0.13	197	
Ecotoxicity	3,750	0.023	7,660	0.048	104	
Marine eutrophication	630	0.004	8,590	0.054	1263	
S3 Accelerated aftercare						
(30 year moisture injection)	6,400	0.040	13,880	0.087	117	
Ecotoxicity	3,640	0.023	6,440	0.040	77	
Marine eutrophication	400	0.003	3,870	0.024	868	
S4 Accelerated aftercare						
(60 year moisture injection)	6,210	0.039	10,220	0.064	65	
Ecotoxicity	3,560	0.022	5,410	0.034	52	
Marine eutrophication	300	0.002	1,430	0.009	377	

	Active control situation					
	'Best case'	'Best case'	'Worst case'	'Worst case'	Increase on	
	(PE ^a)	(PE/t)	(PE)	(PE/t)	'best case' (%)	
S1 Typical aftercare	9,530	0.060	22,560	0.14	136	
Ecotoxicity	4,390	0.027	8,080	0.051	84	
Marine eutrophication	2,640	0.017	10,600	0.066	302	
S2 Accelerated aftercare						
(high permeability cap)	6,760	0.042	20,050	0.13	197	
Ecotoxicity	3,750	0.023	7,660	0.048	104	
Marine eutrophication	630	0.004	8,590	0.054	1263	
S3 Accelerated aftercare						
(30 year moisture injection)	6,400	0.040	13,880	0.087	117	
Ecotoxicity	3,640	0.023	6,440	0.040	77	
Marine eutrophication	400	0.003	3,870	0.024	868	
S4 Accelerated aftercare						
(60 year moisture injection)	6,210	0.039	10,220	0.064	65	
Ecotoxicity	3,560	0.022	5,410	0.034	52	
Marine eutrophication	300	0.002	1,430	0.009	377	

	Active control situation					
	'Best case'	'Best case'	'Worst case'	'Worst case'	Increase on	
	(PE ^a)	(PE/t)	(PE)	(PE/t)	'best case' (%)	
S1 Typical aftercare	9,530	0.060	22,560	0.14	136	
Ecotoxicity	4,390	0.027	8,080	0.051	84	
Marine eutrophication	2,640	0.017	10,600	0.066	302	
S2 Accelerated aftercare						
(high permeability cap)	6,760	0.042	20,050	0.13	197	
Ecotoxicity	3,750	0.023	7,660	0.048	104	
Marine eutrophication	630	0.004	8,590	0.054	1263	
S3 Accelerated aftercare						
(30 year moisture injection)	6,400	0.040	13,880	0.087	117	
Ecotoxicity	3,640	0.023	6,440	0.040	77	
Marine eutrophication	400	0.003	3,870	0.024	868	
S4 Accelerated aftercare						
(60 year moisture injection)	6,210	0.039	10,220	0.064	65	
Ecotoxicity	3,560	0.022	5,410	0.034	52	
Marine eutrophication	300	0.002	1,430	0.009	377	

- Platform to compare and contrast different aftercare strategies
- LCA can provide a more complete indication of the environmental performance of a site
- BUT life cycle impact assessment purely mass based
 - Potential impacts of a fully controlled landfill only ~3 times better than those of a landfill with no active controls (!)
- Lack of toxicity-related characterisation factors

- 100 y timeframe insufficient to evaluate impacts of landfilling
- Active control loss found to significantly influence the longterm potential impacts of landfilling
- Largest potential impacts in both the 'best case' and 'worst case' resulted from the typical aftercare scenario
- Need for more sophisticated life cycle impact assessment

Acknowledgements

- Research undertaken at the University of Southampton
- Financial support provided by EPSRC
- Thanks to Keith Knox & Kerry Rowe for input into the methodology and to Jan Gronow & Terry Coleman for feedback on the paper

www.empa.ch/alca

david.turner@empa.ch