UNIKASSEL BAUINGENIEUR VERSITÄT UND UMWELT INGENIEURWESEN

Critical factors for landfill mining

Prof. Dr. David Laner¹ & Prof. Dr. Joakim Krook²

¹Center for Resource Management and Solid Waste Engineering, University of Kassel ²Division of Environmental Technology and Management, Linköping University

LANDSS landfill aftercare forum

March 20th 2019, Birmingham

What turns landfilled materials into resources?

'It's a big, expensive and risky project,' says James Howells, from Newport

Content

Introduction

- Historical development & background
- Landfills as anthropogenic resources: MINEA
- Landfill mining in theory & practice
- What drives the economy of landfill mining?
 - Goal & Scope
 - Modeling approach
 - Results & Discussion
- Summary
 - Critical factors for the economy of landfill mining

- No commonly accepted definition
 - ... excavate, process, recycle and treat previously deposited materials
- 500,000 (or so) landfills in Europe, which require post-closure management
 - Landfill mining as an alternative
- Overall research trends
 - From solving local landfill problems to emphasis on resource recovery
 - From simple mobile equipment to more technically advanced solutions
 - An emerging system perspective societal impacts and synergies

Recent developments: Enhanced landfill mining

Source: http://www.elfm.eu/en

... combining remediation with recovery of deposited materials, energy carriers and land resources

Landfill mining from a circular economy perspective

- A stepping stone for building future capacity for a circular economy
 - In many regions, an exploitation of landfills could double the available amounts of some secondary resources for decades
- A possible seed-bed for development of new, more resource-effective separation and recycling technologies

MINEA – Mining the European Anthroposphere

- What share of anthropogenic materials can be designated as a resource?
 - Availability of secondary raw materials from anthropogenic sources such as landfills, mine tailings, buildings, infrastructure, etc.
 - Classification in line with geological resource classifications

MINEA – WG 2.2 "Resources in landfills"

LFM in practice: former dumpsite in Kössen

Motivation:

Site heavily affected by flooding & area required for flood protection measures

Mining period:

07/2014 - 06/2015

Source: Steiner (2015): Waste-to-Resources conference.

LFM in practice: Excavation & sorting at Kössen site

Simple technology.

Source: Steiner (2015): Waste-to-Resources conference.

LFM in practice: Output materials

Source: TBU (2016): Räumung der Altablagerung "Auwirtslacke"

Project economy

Total costs:1.5 Million EuroTotal revenues:90,000 EuroNet result:-1.4 Million Euro

- → Specific costs of 17,5 Euro per ton of deposited waste
- → Specific costs of 100 Euro per m² of reclaimed land

Material recovery (alone) does not justify the LFM project....

Poor economy.

Landfill mining in theory: review of economic assessments

- 10 recent case studies in peer reviewed journals
 - different regions, project sizes, objectives and complexities
- Reported hot-spots in terms of main costs (-) and benefits (+) in the reviewed assessments

Krook et al. (2018): Science to support circular economy symposium

Landfill mining in theory: methodological issues

SCENARIO LEVEL

PARAMETER LEVEL

Landfill mining in theory: validity and uncertainty of results

- Recent assessments target deterministic results on economic feasibility
 - Net outcome for a specific scenario
 - Provide little knowledge on what builds up performance of landfill mining

- Ignoring scenario & data uncertainties provide simplified results, but are they valid and useful?
 - High implicit uncertainties
 - Miss out potentials for improvement
 - Difficult to identify critical factors

Systematic assessment of critical factors for the economic performance of landfill mining in Europe

by members of the MINEA working group 2.2

David Laner, John Laurence Esguerra, Joakim Krook, Mika Horttanainen, Mait Kripsalu, Rene Moller Rosendahl, and Nemanja Stanisavljevic

Manuscript submitted to Waste Management

• Goal:

Assess generically important factors for the business case of landfill mining in consideration of regional differences within Europe

→ Analyse under what specific conditions and settings landfill mining could be economically justified and identify key economic drivers in these cases

• Scope:

The spatial and temporal scope of the study involves MSW landfills in Europe with current regional variations in price settings and waste management and treatment practices.

Modeling approach

Selected factors and datasets

#	Level	Description	Set 1	Set 2	Set 3
F0	System	Regional variations in excavation & sorting costs (investment, labour and maintenance)	Low	Medium	High
F1	Site/Project	Landfill settings	Small-scale landfill, short project duration	Medium-scale landfill, medium project duration	Large-scale landfill, long project duration
F2	Site	Landfill composition	Rich MSW landfill	Average MSW landfill	Poor MSW landfill
F3	Site/System	Reference scenario	Do nothing	Medium intensity aftercare	High intensity aftercare or remediation
F4	Project	Project drivers	Resource recovery	Resource recovery & land reclamation	Resource recovery & void space recovery
F5	Project	Excavation & sorting technology	Mobile sorting (on-site)	Conventional tech. stationary sorting (off- site)	BAT stationary sorting (off-site)
F6	System	Waste-to-energy (WtE)	Low gate fee	Medium gate fee	High gate fee
F7	System	Markets for material and energy	Low-level prices	Medium-level prices	High-level prices
F8	Site/System	Value of reclaimed land or landfill void space	Low	Medium	High
F9	System	Waste treatment, disposal, and transport costs	Low	Medium	High
F10	System/Site	Transport distances	Short	Average	Long
F11	System	Financial accounting	Low risk	Medium risk	High risk

- Archetypal settings
 - Purpose: analyse the economy of landfill mining projects under specified boundary conditions (e.g. regional disparities)
 - Design: fix seven factors on the system level (F0, F3, F6, F7, F8, F9, F11) by choosing one of the three datasets
 - \rightarrow 243 scenarios (3⁵= 243) for each setting

• Two extreme settings

- High income, high waste management standards
 F0-3, F3-3, F6-3, F7-3, F8-3, F9-3, F11-1
- Low income, low waste management standards
 - F0-1, F3-1, F6-1, F7-1, F8-1, F9-1, F11-3

NPV of landfill mining scenarios

Sensitivity of project NPV to factor variation

- Variations in 4 factors explain >75% of the results' variation
 - 1. F9 Waste treatment and disposal costs: 34%
 - 2. **F3** Reference scenario: 21%
 - 3. F6 Waste-to-Energy: 12%
 - 4. F1 Landfill settings: 10%

Mainly direct effects of variation on results

_ Mainly indirect effects of variation on results

- Variation in other factors
 - 5. 8. F5 Excavation & sorting technology 6%, F4 Project drivers 5%, F8 – Value of land/void space 5%, F2 – Landfill composition 4%
 - 9. 12. Variation in F11, F7, F0, and F10 alltogether accounts for less than 3% of total variation

Graphical analysis of scenario results

Project economy in the high – high setting

Project economy in the low – low setting

Economy of LFM - Conclusions

- Landfill mining is a challenging business endeavour, which is highly dependent on the specific situation
 - NPV from -139 Euro (deficit) to +127 Euro (profit) per Mg of waste
 - Around 80% of the scenarios result in negative NPVs
 - Critical factors: 1. Costs for waste treatment, disposal and transport, 2. Reference scenario, 3. Costs for waste-to-energy, 4. Landfill settings.
 - Most important cost items
 - Treatment and disposal of excavated and processed materials
 - Excavation & sorting costs
 - Most important revenue items
 - Avoided costs of alternative landfill management
 - Material and land or void space recovery (if valorized) of similar importance
 - System-level conditions drive the major cost and revenue items
 - overarching boundary conditions to guide site selection and project development
 - Extreme of high income, high wmgt standards
 - minimize treatment costs more important than maximize material revenues
 - focus on landfills with low mass-to-area ratios \rightarrow aftercare & land revenue
 - Extreme of low income, low wmgt standards
 - maximize material revenues rather than minimize (already low) treatment costs
 - focus on large landfills rich in valorisable materials

Critical factors for landfill mining... in general

- Landfill mining can offer a sustainable management option for a (small) part of Europe's landfills
 - If in economic terms multiple benefits can be obtained (materials & land & avoided management...)
 - If from a circular economy perspective key challenges of material quality and market acceptance can be overcome
 - If from a societal perspective diverse impacts on different societal scales and time horizons are better understood and internalized
 - If from a policy perspective landfill mining is seen as potential alternative to conventional practices and considered in regulatory frameworks

Thank you for your attention!

David Laner

Center for Resource Management and Solid Waste Engineering Faculty of Civil and Environmental Engineering University of Kassel

E-mail: david.laner@uni-kassel.de