

Biofilters for mitigation of landfill methane emissions

David Pearce - PhD Student

Supervisors:

J. Colin Murrell UEA

Charles Wright NCC

Andrew Crombie UEA

Methane, Landfills and Methanotrophs

- CH₄ is a potent greenhouse gas.
- Landfills are a significant anthropogenic source of CH₄.
- Methanotrophs are bacteria that metabolise and use CH₄ as their carbon source and therefore act as a CH₄ sink.
- Biofilters: methanotroph bioreactors for waste CH₄ removal.

Methylosoma Methylomarina

Methylovulum

We study the metabolism of methanotrophs in the laboratory ("Lab Rats") and then go back into the environment: distribution, diversity, activity and regulation

Strumpshaw CH₄ Biofilter

- Strumpshaw is an older closed landfill producing landfill gas with low levels of CH₄.
- Norfolk County Council are trialling a biofilter on site.
- Biofilter: a matrix designed to maximize potential of methanotrophs.

Biofilter size: 20 x 4 x 1.6m

Currently supplied with 75m³ LFG h⁻¹ containing 8% CH₄, 16% O₂

My PhD project

- Identify the most active methanotrophs in the biofilter.
- Isolate and characterise the most active methanotrophs.
- What parameters are limiting the activity of methanotrophs?
 - N, P, water, gas regimens, metals?
- How to improve the oxidative capacity of the biofilter?

Which regions of the biofilter are most active?

Soil CH₄ oxidation assays (gas chromatography)

Biofilter sampling

Soil CH₄ oxidation assay

CH₄ depletion vs time, gradient used to calculate rate

Rates observed vary with depth; consistent with rates seen in literature.

Culture independent methods

"What methanotrophs are in the biofilter?"

- "Functional gene probing". Genes required for CH₄ oxidation amplified from biofilter sample DNA and sequenced to build a profile of the methanotroph community.
- "DNA-Stable isotope probing" (DNA-SIP) used to identify the active CH₄ oxidising methanotrophs in biofilter soil samples.

Active methanotrophs will incorporate ¹³C into their DNA

Cultivation of key methanotrophs

Isolation and characterisation

Information gained about properties of key methanotrophs in the biofilter will aid better design and operation.