Factors impacting the process and system performance Or How to help the methanotrophs do their job

Julia Gebert

Department Geoscience and Geo-Engineering Delft University of Technology

CH₄ oxidation systems: Design goals

Design goals

- Methylobacter sp.
 0.5 µm

 biomass

 CH₄ + 2 O₂

 CO₂ + 2 H₂O + energy
- (1) Adequate physicochemical environment of high structural stability
- (2) Optimal diffusive ingress of oxygen
- (3) Maximum spatial evenness of gas load
- (4) Robust dimensioning of the system, adapted to load

Choice also depends on

- Intention of measure (e.g. safety, climate)
- After-use of landfill (e.g. access for the public?)

Physical properties of material

(1) Create adequate physicochemical environment of high structural stability

Aims:

- Support biological activity for both bacteria and vegetation
- Avoid loss of permeability and formation of preferential pathways

Requirements properties of MOL

Parameter	Value	Meaning
Soil pH	5.5 to 8.5	Optimum MOB
El. conductivity	< 4 mS/cm	Avoid osmotic stress
Plant-available water	14 vol.%	Support vegetation and MOB
Air-filled porosity at field capacity	14 vol.%	Diffusion of O ₂
Organic matter	2 to 4%, 8% if stable	Nutrient supply to MOB and vegetation
Low susceptibility to consolidation	Preservation of pore structure	
Low susceptibility to cracking	Avoid preferential pathways	

Conclusions adequate geophysical environment

- Conditions for methanotrophic bacteria can be met by a wide range of materials
- What is good for the vegetation, is good for methanotrophic bacteria (nutrients, water)
- Special attention for aeration
- No nitrogen fertilizer or nitrogen-rich amendments due to inhibitory effects of NH₄⁺
- Organic materials (keynote 2) have to be stable
 - \rightarrow minimize competition for O₂
 - → minimize settlement and loss of permeability

(2) Optimize diffusive ingress of oxygen

Aim:

Maximize depth of aeration to

- Create thick and "redundant" CH₄-oxidation layer
- render oxidation process less susceptible to surface effects (frost, drought, heat, cold)

Optimize ingress of oxygen

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O + energy$$

- Twice the volume of O₂ is needed for complete oxidation
- O₂ is provided only from the atmosphere
- Main driver is the concentration gradient, main transport process is diffusion
- → Effective diffusivity of the soil is absolutely crucial

Oxidation efficiency[%]

Relevance of O₂ supply

Advection up to 60 l CH₄ m⁻² h⁻¹

Diffusivity depends on air-filled porosity

Compaction decreases diffusivity

Column experiment

Gas profiles with compaction \(\)

Gas profiles with compaction ↑

Gas profiles with compaction ↑

Oxidation efficiency with advection \(\), medium bulk density

Oxidation efficiency with advection \(\), high bulk density

Impact of construction practice on compaction

Soil textures meeting target of 14 vol.% AFP

FAO/ISS (2006): World reference base for soil resources

Soil textures meeting target of 14 vol.% AFP

FAO/ISS (2006): World reference base for soil resources

Soil textures meeting target of 14 vol.% AFP

FAO/ISS (2006): World reference base for soil resources

Enhancing aeration by hotspot remediation

oxidation window optimized for aeration

Conclusions O₂ supply

- Process heavily dependent on adequate O₂ supply
- O₂ diffusive ingress governed by soil effective diffusivity
- Diffusivity depends on air-filled porosity at given water content and hence on texture and compaction
- Empirical relationships allow for good estimate
- Choice of suitable soil textures and construction practice is crucial

(3) Spatial evenness of gas load

Aims:

- Avoid overloading of individual compartments
- Tap full system potential
- Avoid channelled advective transport

Spatial variability of soil gas composition in a cover soil of a non-sanitary landfill

Methane concentration at hotspot

Morphology of hotspot soil profile

Small scale variability of surface CH₄ concentrations

Gas profiles with advection ↑

 $BD = 1.59 \text{ g/cm}^3, 85 \% \text{ Proctor}$

Gas profiles with advection ↑

 $BD = 1.59 \text{ g/cm}^3, 85 \% \text{ Proctor}$

Gas profiles with advection \(\)

 $BD = 1.59 \text{ g/cm}^3, 85 \% \text{ Proctor}$

Remediated hotspot

Define properties and construction practice

Requirements gas distribution layer

- 1. $< 2\% CaCO_3$
- 2. Purely mineral
- 3. High gas coductivity

- → Avoid precipitation of CO₂
- → High structural stability
- \rightarrow $k_{Gas\ GDL}$ >> $k_{Gas\ MOL}$, so that

$\Sigma(R_{x1+x2+x3}) >> \Sigma(R_{x1})$

- → Sum resistance should be homogenous over all path lengths
- → horizontal gas transport favoured in GDL

With $R = 1/k_{Gas}$

Impact of decreasing kgas in the MOL

Conductivity (advection) depends on air-filled porosity

Air capacity [vol.-%] = Air-filled porosity at Ψ_m = -6 kPa

Gas distribution on a slope

Detail capillary layer

Combination of CH₄ oxidation and water

diversion on slopes

Downslope movement
 of water following
 gravity leads to a
 closed capillary seam
 at foot of slope

 Gas travels upslope along preferential gas pathway

CH₄ fluxes in relation to slope

Ox. eff. of the whole test field still 84%!

 CH_4 -load: 35 g m-2 d-1

Conclusions spatial distribution

- Gas distribution layers are an essential element of MOS design
- Spatial evenness of gas load depends on difference in gas conductivity between GDL and MOL
- Maximizing this difference is limited by the requirement on diffusivity for the MOL
 - → Calculate pressure losses over path lengths
 - → Decide on maximum difference in pressure loss
 - → Define number of gas inlet points per unit area
- If system is on slope, account for higher necessary oxidation capacity upslope

(4) Dimension adapted to load

Aims:

- Decrease spatial load to below the expected spatial CH₄ oxidation potential
- Consider seasonal variation of oxidation rate (temperature and saturation)

Impact of temperature

Seasonal effects: Temperature

Impact of water potential

Gebert, 2013 47

Methane Oxidation Tool (MOT)

Designing for load

- Estimate CH₄ oxidation potential based on soil properties and climatic conditions
- Design follows limiting factor:
 high quality soil vs. availability of space
- Consider seasonal changes in CH₄ oxidation activity
- Consider required performance
- Given the soil texture, water potential, porosity and hence diffusivity can be easily predicted and modelled

Monitoring

What do you want to know

- Detection of emissive spots?
- Quantification of emissive spots?
- Performance of windows or filters?
- Whole-site emissions?

Point measurements

Spatially integrating measurements

- Consider high spatial and temporal variability of gas fluxes and CH₄ oxidation rates
- Is it research (process information), is it longterm performance monitoring, should it prove on-site safety?
 - different techniques and timely resolution, maybe even limit values

Added value of combined CH₄ and CO₂ measurement

$$CH_4 + 2 O_2 \rightarrow CO_2 + 2 H_2O$$

C-balance: 1 CH₄ goes to 1 CO₂

 $CH_4 \downarrow and CO_2 \uparrow$

Ratio $CO_2: CH_4^{2} \uparrow$ Shift of ratio enables calculation of oxidation efficiency (Christophersen et al., 2001)

Gebert et al., 2011

Results of combined CH₄ and CO₂ measurement

Results of combined CH₄ and CO₂ measurement

Effciency (% load)

Conclusions factors impacting the process and system performance

Potential oxidation rates of $> 1.200 \,\mathrm{g}$ CH₄ m⁻² d⁻¹ have been reported. Whether this is achieved depends on

- Seasonal changes in temperature and saturation
- Supply of oxygen
- Spatial homogeneity of gas load to system
- Increased load → increased rates (up to a limit)
- Empirical evidence abundant
- MOS can be designed

Project partners in MiMethox

Bibliography

1) Methane oxidation and gas fluxes in soil covers of on non-sanitary landfills

- Gebert, J., Rachor, I.M., Streese-Kleeberg, J., Pfeiffer, E.-M. (2016): Methane oxidation in a landfill cover soil under conditions of diffusive and advective flux, assessed by in-situ and ex-situ methods. Current Environmental Engineering 3 (2), 144-160.
- Rachor, I., Gröngröft, A., Gebert, J., Pfeiffer, E.-M. (2013): Variability of methane emissions from an old landfill on different time scales. European Journal of Soil Science 64, 16-26.
- Gebert, J., Rachor, I., Gröngröft, A., Pfeiffer, E.-M. (2011): Temporal variability of soil gas composition in landfill covers. Waste Management 31, 935-945.
- Röwer, I. U., Geck, C., Gebert, J., Pfeiffer, E.-M. (2011): Spatial variability of soil gas concentrations and methane oxidation in landfill cover soils. Waste Management 31, 926-934.
- Streese-Kleeberg, J., Rachor, I., Gebert, J., Stegmann, R. (2011): Field quantification of methane oxidation in landfill cover soils by means of gas push-pull tests. Waste Management 31, 995-1001.

2) Methane oxidation in biocovers

- Geck, C. Scharff, H., Pfeiffer, E.-M., Gebert, J. (2016): Validation of a simple model to predict the performance of methane oxidation systems, using field data from a large scale biocover test field. Waste Management 56, 280-289.
- Röwer, I.U., Scharff, H., Pfeiffer, E.-M., Gebert, J. (2016): Optimized landfill biocover for CH4 oxidation I: Experimental design and oxidation performance. Current Environmental Engineering 3 (2), 80-93.
- Röwer, I.U., Streese-Kleeberg, J., Scharff, H., Pfeiffer, E.-M., Gebert, J. (2016): Optimized landfill biocover for CH4 oxidation II:
 Implications of spatially heterogeneous fluxes for monitoring and emission prediction. Current Environmental Engineering 3 (2), 94-106.
- Cabral, A.R., Capanema, M.A., Gebert, J., Moreira, J.F., Jugnia, L.B. (2009): Quantifying microbial methane oxidation efficiencies in two experimental landfill biocovers using stable isotopes. Water, Air, and Soil Pollution 209, 157-172.

3) Methane oxidation in biofilters

- Gebert, J., Gröngröft, A. (2006): Performance of a passively vented field-scale biofilter for the microbial oxidation of landfill methane.
 Waste Management 26, 399-407.
- Gebert, J., Gröngröft, A. (2006): Passive landfill gas emission influence of atmospheric pressure and implications for the operation of methane-oxidising biofilters. Waste Management 26, 245-251.
- Gebert, J., Gröngröft, A., Miehlich, G. (2003): Kinetics of microbial landfill methane oxidation in biofilters. Waste Management 23, 609-619.

Bibliography ctd.

4) Methane oxidation: Laboratory experiments regarding various influential parameters

- Rachor, I., Gebert, J., Gröngröft, A., Pfeiffer, E.-M. (2011): Assessment of the methane oxidation capacity of compacted soils intended for use as landfill cover materials. Waste Management 31, 833-842.
- Bohn, S., Brunke, P., Gebert, J., Jager, J. (2011): Improving the aeration of critical fine-grained landfill top cover material by vegetation to increase the microbial methane oxidation efficiency. Waste Management 31, 854-863.
- Gebert, J., Gröngröft, A., Pfeiffer, E.-M. (2011): Relevance of soil physical properties for the microbial oxidation of methane in landfill covers. Soil Biology & Biochemistry 43, 1759-1767.

5) Landfill methane oxidation: Methods

- Gebert, J., Röwer, I. U., Scharff, H., Roncato, C. D. L., Cabral, A. R. (2011): Can soil gas profiles be used to assess microbial CH4 oxidation in landfill covers? Waste Management 31, 987-994.
- Gebert, J., Streese-Kleeberg, J. (2017): Coupling stable isotope analysis with gas push-pull tests to derive in-situ values for the fractionation factor αox associated with the microbial oxidation of methane in soils. Soil Science Society of America Journal. Doi: 10.2136/sssaj2016.11.0387; Date posted: April 12, 2017.

6) Landfill methane oxidation: Microbiology

- Gebert, J., Perner, M. (2015): Differentiation of microbial community composition in soil by preferential gas flow. European Journal of Soil Biology 69, 8-16.
- Gebert, J., Singh, B.K., Pan, Y., Bodrossy, L. (2009): Activity and structure of methanotrophic communities in landfill cover soils. Environmental Microbiology Reports 1, 414-423.
- Gebert, J., Stralis-Pavese, Alawi, M., N. & Bodrossy, L. (2008): Analysis of methanotrophic communities in landfill biofilters by means of diagnostic microarray. Environmental Microbiology 10, 1175-1188.
- Gebert, J., Gröngröft, A., Schloter, M., Gattinger, A. (2004): Community structure in a methanotroph biofilter as revealed by phospholipid fatty acid analysis. FEMS Microbiology Letters 240, 61-68.

7) Methane oxidation on landfills: Reviews

- Scheutz, C., Bogner, J., De Visscher, A., Gebert, J., Hilger, H., Huber-Humer, M., Kjeldsen, P., Spokas, K. (2009): Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions. Waste Management & Research 27, 409-455.
- Huber-Humer, M., Gebert, J., Hilger, H. (2008): Biotic systems to mitigate landfill methane emissions. Waste Management & Research 26, 33-46.

Bibliography ctd.

8) Technical reports

- Geck, C., Röwer, I.U., Kleinschmidt, V., Scharff, H., Gebert, J. (2016): Design, validation and implementation of a novel accumulation chamber system for the quantification of CH4 and CO2 emissions from landfills. Technical Report. Available from http://www.afvalzorg.nl/Afvalzorg/EN/PDF/Novel%20large%20emission%20measurement%20chamber.pdf
- Gebert, J., Huber-Humer, J., Oonk, H., Scharff, H. (2011): Methane Oxidation Tool An approach to estimate methane oxidation on landfills. Available from http://www.afvalzorg.nl/EN/About-us/Publications/Methane-oxidation.asp
- 9) Theses (available at https://www.geo.uni-hamburg.de/en/bodenkunde/ueber-das-institut/hba.html)
 - Geck, C. (2017): Temporal and spatial variability of soil gas transport parameters, soil gas composition and gas fluxes in methane oxidation systems. PhD thesis. Hamburg Soil Science Studies 83. ISSN 0724-6382.
 - Röwer, I. (2014): Reduction of methane emissions from landfills: Processes, measures and monitoring strategies. PhD thesis. Hamburg Soil Science Studies 75. ISSN 0724-6382.
 - Rachor, I. (2012): Spatial and Temporal Patterns of Methane Fluxes on Old Landfills: Processes and Emission Reduction Potential. Hamburg Soil Science Studies 67. ISSN 0724-6382.
 - Gebert, J. (2013): Microbial Oxidation of Methane Fluxes from Landfills. Habilitation thesis. Hamburg Soil Science Studies 66. ISSN 0724-6382.

