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CH4 oxidation 
systems:  
Design goals 
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Physical 
properties  
of material 

Design goals 

(1) Adequate physicochemical environment 
of high structural stability 

(2) Optimal diffusive ingress of oxygen 
(3) Maximum spatial evenness of gas load 
(4) Robust dimensioning of the system, adapted to load 

 
Choice also depends on 
– Intention of measure (e.g. safety, climate) 
– After-use of landfill (e.g. access for the public?)  
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(1) Create adequate 
physicochemical environment  
of high structural stability 

Aims: 
– Support biological activity for both bacteria and 

vegetation 
– Avoid loss of permeability and formation of 

preferential pathways 
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Requirements properties of MOL 
Parameter Value Meaning 

Soil pH 5.5 to 8.5 Optimum MOB 

El. conductivity < 4 mS/cm Avoid osmotic stress 

Plant-available 
water 14 vol.% Support vegetation 

and MOB 
Air-filled porosity  
at field capacity 14 vol.% Diffusion of O2 

Organic matter 2 to 4%,  
8% if stable 

Nutrient supply to 
MOB and vegetation 

Low susceptibility 
to consolidation Preservation of pore structure 

Low susceptibility 
to cracking Avoid preferential pathways 

More in Scheutz et al., 2009 
Compost 

Porous clay 

Mineral soil 
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Conclusions adequate geophysical 
environment 

– Conditions for methanotrophic bacteria can be 
met by a wide range of materials 

– What is good for the vegetation, is good for 
methanotrophic bacteria (nutrients, water) 

– Special attention for aeration 
– No nitrogen fertilizer or nitrogen-rich 

amendments due to inhibitory effects of NH4
+ 

– Organic materials (keynote 2) have to be stable 
→ minimize competition for O2 
→ minimize settlement and loss of permeability 

Compost 

Porous clay 

Mineral soil 
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(2) Optimize diffusive ingress  
  of oxygen 

Aim: 
Maximize depth of aeration to 
– Create thick and “redundant” CH4-oxidation layer 
– render oxidation process less susceptible to surface 

effects (frost, drought, heat, cold) 
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CH4 + 2 O2   → CO2 + 2 H2O + energy 
 

– Twice the volume of O2 is needed  
for complete oxidation 

– O2 is provided only from the 
atmosphere 

– Main driver is the concentration 
gradient, main transport process is 
diffusion 

→ Effective diffusivity of the soil  
 is absolutely crucial 

Optimize ingress of oxygen 
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Relevance of O2 supply 
Diffusion up to 2 l CH4 m-2 h-1 
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Rachor, 2012; Gebert et al., 2016 

Advection up to 60 l CH4 m-2 h-1 
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Diffusivity depends on air-filled porosity 
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Compaction decreases diffusivity 
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Column experiment 
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CH4 load = 2.2 l m-2 h-1 (1.4 g m-2 h-1)  



14 

90
80
70
60
50
40
30
20
10
0

0 10 20 30 40 50 60 70 80

 N2

 O2

 CO2

 CH4

Concentration [Vol.%]
D

ep
th

 [c
m

]
Phase 1
10.09.2008

Gas profiles with compaction ↑ 
1.42 g/cm3 

CH4 load = 2.2 l m-2 h-1 (1.4 g m-2 h-1)  

After Gebert et al., 2011 



15 

90
80
70
60
50
40
30
20
10
0

0 10 20 30 40 50 60 70 80

 N2

 O2

 CO2

 CH4

Concentration [Vol.%]
D

ep
th

 [c
m

]
Phase 1
10.09.2008

Gas profiles with compaction ↑ 
1.59 g/cm3 

After Gebert et al., 2011 

CH4 load = 2.2 l m-2 h-1 (1.4 g m-2 h-1)  



16 

1 2 3
0

20

40

60

80

100

Col. 3
85 % Pr.CH

4 o
xid

at
io

n 
ef

fic
ie

nc
y 

[%
]

Operational phase no.

Oxidation efficiency with advection ↑,  
medium bulk density  

2.2                   3.6                 5.3   l CH4 m-2 h-1 

1.42 g/cm3 

CH4 inlet flux 

After Gebert et al., 2011 



17 

1 2 3
0

20

40

60

80

100 Col. 1
95 % Pr.

CH
4 o

xid
at

io
n 

ef
fic

ie
nc

y 
[%

]

Operational phase no.

Oxidation efficiency with advection ↑,  
high bulk density 

2.2                   3.6                 5.3   l CH4 m-2 h-1 

1.59 g/cm3 

CH4 inlet flux 

After Gebert et al., 2011 



18 

80

70

60

50

40

30

20

10

0

0 1 2 3 4 5

G Uphill

Pressure (MPa) 

De
pt

h 
(c

m
)

80

70

60

50

40

30

20

10

0

0 1 2 3 4 5

C Uphill

Pressure (MPa) 

De
pt

h 
(c

m
)

Caterpillar 
Longstick 
excavator 

Loosening 
with plow 
after 
construction 

Impact of construction practice on compaction 

Cone penetration test 



19 

low compaction, BD < 1.4 g/cm3 

Soil textures meeting target of 14 vol.% AFP 

FAO/ISS (2006): World  
reference base for soil resources 
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Medium compaction, BD < 1.4-1.6  g/cm3 

FAO/ISS (2006): World  
reference base for soil resources 

Soil textures meeting target of 14 vol.% AFP 
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High compaction, BD > 1.8  g/cm3 

FAO/ISS (2006): World  
reference base for soil resources 

Soil textures meeting target of 14 vol.% AFP 



22 

Unsanierter Hotspot 

Implementation of methane 
oxidation window optimized 
for aeration 

Enhancing aeration by hotspot remediation 
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Conclusions O2 supply 

– Process heavily dependent on adequate O2 
supply 

– O2 diffusive ingress governed by soil 
effective diffusivity 

– Diffusivity depends on air-filled porosity at 
given water content and hence on texture 
and compaction 

– Empirical relationships allow for good 
estimate 

– Choice of suitable soil textures and 
construction practice is crucial 
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(3) Spatial evenness of gas load  

x3 

x2 x1 

Hotspot 

Aims: 
– Avoid overloading of individual compartments 
– Tap full system potential 
– Avoid channelled advective transport 
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Spatial variability of soil gas composition in a 
cover soil of a non-sanitary landfill 
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Methane concentration at hotspot 
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Morphology of hotspot soil profile 
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Hotspot 

Preferential pathways 
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Define properties 
and construction 
practice 

Remediated hotspot 
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Designed cover 

O2    CO2 

CH4 + 2 O2 → CO2 + 2 H2O 

 
 
 
 
 
MOL 
 
 
GDL 
 
 
Waste 
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x3 

x2 x1 

Requirements gas distribution layer 
1. < 2% CaCO3    → Avoid precipitation of CO2 

2. Purely mineral   → High structural stability 
3. High gas coductivity  → kGas_GDL  >> kGas_MOL , so that 

 
 
 
 
 

MOL 
 
 
 

GDL 
 

Waste  
body 

Σ(Rx1+x2+x3) >> Σ(Rx1) 
 
→ Sum resistance should 

be homogenous over all 
path lengths 

→ horizontal gas transport 
favoured in GDL 

 
                  With R = 1/kGas  
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Impact of decreasing kgas in the MOL 

MOL loose    MOL slightly compacted 
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Conductivity (advection) depends on air-filled 
porosity 
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Top soil MOL 
 
Subsoil MOL 
 
 
Capillary layer 
 
Capillary block (GDL) 
 
HDPE membrane 

Gas distribution on a slope 



39 

Detail capillary layer 

Continuous water- 
saturated seam 
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Combination of CH4 oxidation and water 
diversion on slopes 

– Downslope movement 
of water following 
gravity leads to a 
closed capillary seam 
at foot of slope 

– Gas travels upslope 
along preferential gas 
pathway 
 

 
 
MOL 
 
 
 
 
 
 
 
 
Sand 
 
Gravel 

Water 

LFG 
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CH4 fluxes in relation to slope downslope 

Röwer, 2014 
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Conclusions spatial distribution 

– Gas distribution layers are an essential element of MOS 
design 

– Spatial evenness of gas load depends on difference in gas 
conductivity between GDL and MOL 

– Maximizing this difference is limited by the requirement 
on diffusivity for the MOL 
→ Calculate pressure losses over path lengths 
→ Decide on maximum difference in pressure loss 
→ Define number of gas inlet points per unit area 
 

– If system is on slope, account for higher necessary  
oxidation capacity upslope 
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(4) Dimension adapted to load 

Aims: 
– Decrease spatial load to below the expected 

spatial CH4 oxidation potential 
– Consider seasonal variation of oxidation rate 

(temperature and saturation) 
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Impact of temperature 
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Impact of water potential 
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Methane Oxidation Tool (MOT) 

Standard Oxidation Unit 
6.2 kg m-2 a-1 
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Designing for load 

– Estimate CH4 oxidation potential based on soil 
properties and climatic conditions 

– Design follows limiting factor:  
high quality soil vs. availability of space 

– Consider seasonal changes in CH4 oxidation activity 
– Consider required performance 
– Given the soil texture, water potential, porosity and 

hence diffusivity can be easily predicted and modelled 
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Monitoring 
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What do you want to know 

– Detection of emissive spots? 
– Quantification of emissive spots? 
– Performance of windows or filters? 
– Whole-site emissions? 

 

Point 
measurements 

Spatially 
integrating 
measurements 

– Consider high spatial and temporal variability of 
gas fluxes and CH4 oxidation rates 

– Is it research (process information), is it long-
term performance monitoring, should it prove 
on-site safety? 
→  different techniques and timely    
  resolution, maybe even limit values 
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52 Size: 4,2 * 4,2 m, Volume: 8,8 m3, Weight: ~17 kg 

Novel chamber for emission quantification on windows, 
remediated hot spots and hot areas or test cell scale 
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Report: 
http://www.afvalzorg.nl/Afvalzorg/EN/PDF/Novel%20large%20emission%20measurement
%20chamber.pdf 
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Added value of combined CH4 and CO2 
measurement 

Gebert et al., 2011 

CH4 + 2 O2 → CO2 + 2 H2O 
 

C-balance: 1 CH4 goes to 1 CO2 

CH4 ↓ and CO2 ↑ 
Ratio CO2 : CH4 ↑ 

Shift of ratio enables calculation of 
oxidation efficiency (Christophersen et al., 2001) 
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CO2 

CH4 

Surface screening 
 

Pump 
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Leistung (% der Fracht) 

CO2-CH4 ratio 

Results of combined CH4 and CO2 measurement 
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CO2-CH4 ratio 

Effciency (% load) 

Results of combined CH4 and CO2 measurement 
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Conclusions factors impacting the process and 
system performance 

Potential oxidation rates of > 1.200 g CH4 m-2 d-1 have been 
reported. Whether this is achieved depends on 

 
– Seasonal changes in temperature and saturation 
– Supply of oxygen 
– Spatial homogeneity of gas load to system 
– Increased load → increased rates (up to a limit) 

 
– Empirical evidence abundant 
– MOS can be designed 
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Project partners in MiMethox 
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Thank you! 
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