

Landfill aeration: review of technical issues and effectiveness

Keith Knox and Richard Beaven

LANDSS Forum Open Meeting, Priory Rooms, Birmingham Thursday 30th March 2017

Engineering and the Environment

Knox Associates (UK) Ltd

- Studies into landfill aeration since early 1990s, full scale early 2000s:
 - Main players in its development: Germany, Austria, Italy, USA
- What might be the main drivers for landfill aeration in the UK?
 - reduce gas emissions to within the capacity of passive control systems
 - reduce leachate NH₄-N to within the capacity of passive control systems
 - currently no strong financial incentive to further reduce GHG emissions

Content of presentation:

- what can be achieved under optimized conditions (lysimeters)
- what has been achieved in full scale projects
- factors leading to reduced efficiency in full scale projects to date
- aeration system design
- fate of leachate nitrogen
- other aspects e.g. fire/high temperature, settlement, metal mobility
- challenges, limitations, cost context

Lysimeters* show what is possible:

pump

Conditions are generally optimized:

- shredded homogenized waste; no barriers to flow
- controlled temperature and moisture regime
- often high aeration rates
- likely to be good, uniform distribution of air
- often include high rate leachate recirculation, which aids mixing and liquid/air contact
- often flushed at high rate
- easier to do gas and liquid mass balance
- Typical LSR , 40cm ϕ , 120cm tall, ~70kg/100 litres waste

* Landfill Simulation Reactors, or LSRs

Lysimeters: results summary

- Acceleration of carbon flux
 - mainly as CO₂
 - reductions in solids organic content (RA₄, GP₂₁, BMP, Cellulose, Lol etc.
- Rapid removal of leachate NH₄-N to near zero
- Some reduction of leachate hard COD
- Post aeration: low C-flux, low NH₄-N
 - fewer data on post-aeration phase emissions

Site/waste details	lling period of study zone ears since closure ge of waste studied uantity of waste in lysimeter(s) situ waste density ameter of lysimeter rea of lysimeter top surface aste depth in lysimeter amperature controlled?	units years kg litres t/m3 mm m2	Germany 1997 8 - 14	1992; mixtures >12; 4-10; mix 70 120	Germany mid 60s - 1987 11 and 13; (1998 and 2000 expts) 70 120	al	Austria 1965 - 1973 39 70kqDM	Austria (ii) 1986-1995 8	Austria (ii) 1986-1995 8	Austria (i) 1976-1985 (ii) 1986-1995 13	1979 - 2004	Laogang, China "5 - 8 years since landfilled"	Calgary >30
Site/waste details	ars since closure age of waste studied uantity of waste in lysimeter(s) situ waste density ameter of lysimeter rea of lysimeter top surface aste depth in lysimeter	kg litres t/m3 mm m2	8 - 14	pre-1990; post- 1992; mixtures >12; 4-10; mix 70 120	11 and 13; (1998 and 2000 expts) 70		39	8		(ii) 1986-1995	6		>30
Site/waste details	ge of waste studied uantity of waste in lysimeter(s) situ waste density ameter of lysimeter rea of lysimeter top surface aste depth in lysimeter	kg litres t/m3 mm m2	8 - 14	1992; mixtures >12; 4-10; mix 70 120	and 2000 expts) 70				8	13	6		>30
Site/waste details	ge of waste studied uantity of waste in lysimeter(s) situ waste density ameter of lysimeter rea of lysimeter top surface aste depth in lysimeter	kg litres t/m3 mm m2	8 - 14	>12; 4-10; mix 70 120	70				8	13	-	landfilled"	>30
details	antity of waste in lysimeter(s) situ waste density ameter of lysimeter eao of lysimeter top surface aste depth in lysimeter	kg litres t/m3 mm m2		70 120			704/2014				~12		
details	situ waste density ameter of lysimeter rea of lysimeter top surface aste depth in lysimeter	litres t/m3 mm m2		120						-			
Dia Are	ameter of lysimeter rea of lysimeter top surface aste depth in lysimeter	t/m3 mm m2			120			15kgDM	15kgDM	120	12	3,100	
Dia Are	ameter of lysimeter rea of lysimeter top surface aste depth in lysimeter	mm m2					120			70	20		
Are	rea of lysimeter top surface aste depth in lysimeter	m2								1.6		1.4 (high)	0.3 (low)
	aste depth in lysimeter			400	400		400	200	200	400	200	1,000	
				0.126	0.126		0.126	0.031	0.031	0.126	0.031	0.785	
	emperature controlled?	cm		~100	~100			65	65		52	200	
		-		yes	yes		yes	yes	yes	yes	yes	no	
	emperature	С		35	35		36	35	35	40		-2 to +37	
	itial moisture content	% WM		40			23 - 28						
Wa	ater irrigation rate	litre/d		6	4		~1						
		mm/d		48	32						1000	10000	
Aeration/		mm/a		17,380	~12,000					1.0	1000	1200?	
	ean water flushing rate	litre/week		not clear Zero x 12wks.	1		~0.5			1.2	0.55		
· · · · ·				20 x 12 weeks.									
irrigation				70 x 6 weeks.		3988 i.e.							
Aer	eration rate(s)	litre/day		320 x 6 weeks	not reported	massive rate		12/24		72	24	720 - 1440	
details		m3/t.a		104, 365, 1668	88	104,000	174	175 & 350	185	219	730	85 - 170	
	eration period	d		280	640/930/1350		731	513 & 270	514	740	545	4.5years	
Aer	eration strategy				from below		central lance	from below	from below	from below	from below	via 3 levels	
Pre	re-aeration carbon flux	m3/t.a											
				no data on	(i) 41		AW 22.5						
			2.6 - 34	carbon flux or	(ii) 8 (iii) 6.4		AD 22.5, cf AN 7, so 3x accel'n		11.6	10.6	(i) overall 18.2 (ii) final rate 7.3	0.6	
Ca	arbon flux during aeration	m3/t.a	2.6 - 34	gas comp.	(11) 6.4		so 3x accein			flux remained low	(II) final rate 7.3	0.6	
										after stop			
			3 - 5x				3x accel'n; TOC			aeration, noCH4		2x acceleration	
Effects -	arbon flux overall effect		acceleration				loss of ~2.2%DM			detected		cf "anaerobic"	
Ga	as composition										all CO2, no CH4		
				Yes:	Yes:		2.7mg/l.d in wet	yes;			yes:		
Rei	emoval of NH4-N	rate		~3 to 6mg/l.d	~4mg/l.d	33mg/l.d	aerated (AW)	25mg/l.d			22 mg/l.d	yes; ~6mg/l.d	
		lag (d)		45 - 85	~35-40	no Exponential					35		
					Increase, mainly Cu, Cd, Pb. Slight	decline, consider							
	pact on metal mobility			no data	increase Ni, Cr.	air stripping role?	no data	no metals data	no metals data	no metals data			

Lysimeters: acceleration of carbon flux

- Benchmark
 - Starting point is the gas curve for real landfills:
 - ~1m³/t.a +/-, with 50-75 m³/t potential remaining.
 - Looking for acceleration compared with that.

Lysimeters: acceleration of carbon flux cf anaerobic

- sometimes get initial burst then slows down
- still significant rates after prolonged aeration period

Sources shown: Brandstatter, Heferlbach lysimeters (2015);; Huber-Humer et al, Mannersdorf lysimeters, 2013

Lysimeters: acceleration of carbon flux

- table shows carbon flux in a range of aerated lysimeters
- shown as equivalent LFG flow (50% CH_4 / 50% CO_2) in m³/t.a
- compare with 'tail' rates of 1 m³/t.a:

Various lysimeters	2.6 - 34	Leikam et al, 1997
Initial rate, Days 1-40	41	Ritzkowski et al, 2003
Steady rate, Day 40-250	8	
Aerated, wet	22.5	Brandstatter et al
Aerated, dry	22.5	
Anaerobic control	7	
Aerated, wet	11.6	Prantl et al, 2005
Aerated, wet	10.6	Hrad et al, 2013
Average over whole study	18.2	Huber-Humer et al, 2013
Rate at end of study	7.3	

Lysimeters: removal of ammonia from leachate

- Examples shown from two studies
- Rapid removal cf flushed anaerobic LSRs
- Range 2.7 25 mgNH₄-N/I.d
- short lag period 35-45 days
- late appearance of nitrate

Sources: 2003 Ritzkowski et al; 2003 Hantsch et al; 2015 Brandstatter et al

Lysimeters: impact on leachate hard COD

- graph shows aerated cf. anaerobic
- table shows aerated wet/dry cf anaerobic wet
- modest reductions in COD
 or TOC
- not solely due to flushing

AW &AD = aerated wet/dry; AN = anaerobic, wet									
	AW start	AD start	AN start	AW finish	AD finish	AN finish			
COD, mg/l	342	384 (399 (14.4	58.6	<mark>112</mark>			
BOD, mg/l	195	225	229	1.2	2.4	37.5			

Source: 2011 #751, Fig 3. Kuhstedt lysimeters

Source: 2015 Brandstatter, Heferlbach lysimeters

'Wet' vs 'dry' operation

1000

Comparison of 'wet' (upper chart) and 'dry' (lower chart) lysimeters at Kuhstedt

- 'Wet': recirculation HRT ~1 week; clean water HRT ~27 weeks;
- 'Dry': HRTs ~13 weeks & 450 wks resp.
- NH₄-N removed in Dry LSR but at a slower rate (~900d vs ~120d)
- possible role of irrigation/recirculation at full scale
 - similar effect in Austrian lysimeters (Brandstatter et al)

Lysimeters: behaviour post-aeration

- Gradual return of some NH₄-N but only to still quite low concentrations
- No change in COD
- No CH₄ detected in Hrad et al. up to 75 weeks post-aeration
- No longer term post-aeration data found

"Anaerobic" = formerly aerated lysimeter; "Aerobic" = formerly anaerobic lysimeter

Source: WM 2013 Hrad et al. "Anaerobic" = formerly aerated lysimeter; "Aerobic" = formerly anaerobic lysimeter

Field scale studies: basic operational features

- Mostly done at landfills <20m deep
- Areas from 1 to 6ha
- Years since closure: 4 to 39
- Reported data periods mostly <2 years
 - range ~1yr to ~6 yrs

Field scale studies: aeration rates

- Well spacings typically from 10m to 50m
- Aeration rates much lower than in lysimeters
 - often only ~10-20%
- But still high cf normal rates of LFG generation

Field scale results: biochemistry

- Rapid change in biochemistry (1-2 weeks) evident from gas composition
 - change to CO₂ >> CH₄
 - continued presence of some methane indicates anaerobic zones remain

Source: Cossu et al 2007 Shows rapid change to CO2 > CH4

Field scale results: carbon flux

- Acceleration of carbon release as gas
 - significant cf 'tail' rate of 1m³/t.a
 - slower by ~5 to 10x cf lysimeters

Source: Brandstatter et al 2016, Heferlbach, Austria Shows carbon release as % waste TOC content in full scale ('Deponie') and two LSRs, wet and dry ('Labor')

Field scale results: leachate NH₄-N

- NH₄-N removal from leachate achieved only occasionally, and incomplete
- Examples show one that worked, one that did not

Source Ritzkowski et al, 2003: Kuhstedt, closed 1987, aerated 2001-2007. Nitrogen species at leachate/groundwater well adjacent to toe of wastes.

Source Hrad et al 2015 #200, Mannersdorf, Austria. Aerated at 20-30 m3/t.a

Field scale results: post-aeration

- Few post-aeration data
 - rapid reversion to $CH_4 > CO_2$
 - oxygen remains > zero

Source: Oncu et al, Sardinia 2013, Fig 4

Source Ritzkowski et al, 2009: Kuhstedt, closed 1987, aerated 2001-2007. Mean in situ gas composition following cessation of aeration in June 2007

Factors affecting performance at full scale

- Why full scale systems may perform worse than lysimeters
 - Aeration rates generally much lower
 - Well spacing and well-field design highly variable
 - Air distribution uneven, localised
 - Limited control of moisture regime: zones may be too wet or too dry:
 - lysimeters often irrigated at high rates by recirculation + flushing
 - High leachate levels
 - Heterogeneity of the wastes and barriers to flow
 - e.g. cover, low K wastes, leachate lenses
 - preferential flow paths, leakage of air through surface and side slopes
 - continued presence of anaerobic zones and anaerobic processes
 - No control of temperature: e.g. very high T may inhibit nitrifiers

Aeration systems: huge variations in conceptual design

Source: Raga et al, Legnano, Italy

Source: Oncu et al, 2011, Konstanz-Dorfweiher, Germany

Source: Ritzkowski and Stegmann, 2012

Aeration systems and effectiveness

Aeration pilot studies by University of Padua

- injection wells at e.g. ~20m spacing
- monitoring wells at three depths
- varied injection flow/pressure
- determine radius of influence

Source: Italy, Cestaro et al, 2003 #571, Fig 2

Aeration systems and effectiveness

- Aeration pilot studies by University of Padua, example of results:
 - wide variation in flow vs pressure relationships over short distances
 - O₂ distribution shows clear evidence of short-circuiting
 - radius of influence range from 20m at Q=50m³/h to 10-15m at Q= 160-230m³/h

Source: Italy, Cossu et al, 2009 #699, Fig 3, Flow-pressure relationships for different wells

Figure 4: O₂ concentration (% vol.) in the monitoring wells 11 m deep in the landfill and in wells A1, A2 and A4 after a 6-hour air injection test from well A3.

Source: Italy, Cossu et al, 2009 #699, Fig 4, O2 distribution at 11mbg when aerating through A3

Aeration systems and effectiveness

- distribution of injected air, from detailed monitoring study
- average waste depth 8-10m
- large areas unreached by aeration at ~22 and 65 m³/t.a via wells at ~25m spacing

Source: Austria, Hrad et al 2013, Mannersdorf, 13 years postclosure. Shows boundary of O2 > 5%; waste 8-10m deep average, range 3-18m.

Air distribution – Timo Heimovaara modelling

Fate of Nitrogen during aeration: mass balance

- Quantification of NH₃, N₂O and N₂ in off gases; NH₄-N and TON in leachate phase
- Evidence that both nitrification and denitrification occur
- Austrian lysimeters: shows % of initial total N content, TN_{init}, after 2+ years aeration
- Overall: 'Dry' N mobilisation similar to 'Wet' but gaseous loss smaller and greater % as nitrate

Other issues: temperature

Source: Heyer et al, Sardinia 2003 #723

Other issues: accelerated settlement

Source: Gisbert 2010, Kuhstedt data

Challenge for in situ aeration

- Get sufficient air to a high % of the waste mass
 - combination of deep and shallow wells?
 - use closer well spacing?
 - use higher pressures?
 - aim for the most cost-effective combination of well field design, well spacing and blower sizing
- Create optimum moisture regime for nitrification and especially for denitrification
 - possible need for leachate recirculation
 - how to achieve optimum moisture in unlined landfills
- Mass balance monitoring to improve understanding of N
 removal mechanisms
- Quantify cost/benefit elements
 - Capex: wells, blowers, pipework, control systems, off-gas treatment
 - Opex: power, staffing, loss of gas revenue, etc
 - Reduced gas and leachate management costs; subsidies/incentives