

Assessing, Capturing and Utilising Methane from Expired and Non-operational landfills

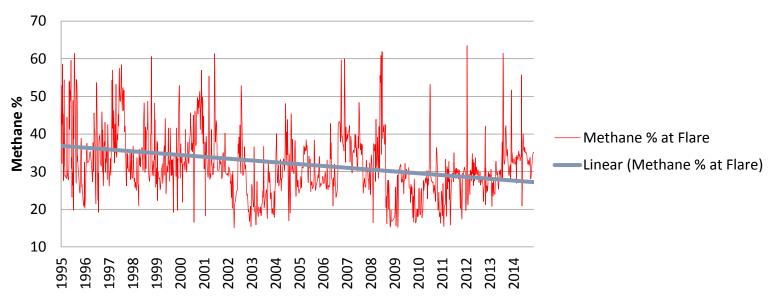
for 2012-2015

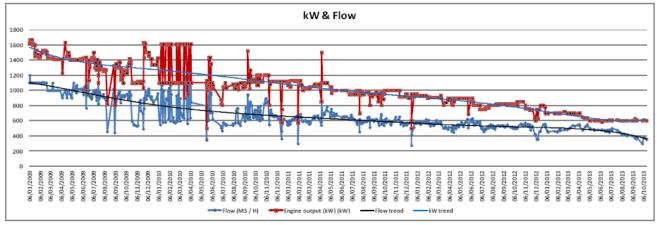
Lessons from ACUMEN – Managing Closed Landfills in austere times

Charles Wright

LANDSS Landfill Aftercare Forum, 21st October 2015

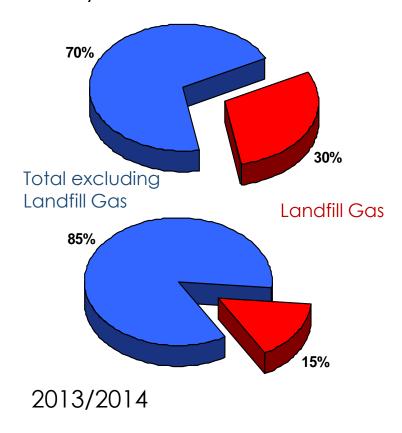
NCC Closed Landfill Budgets





Why bother?

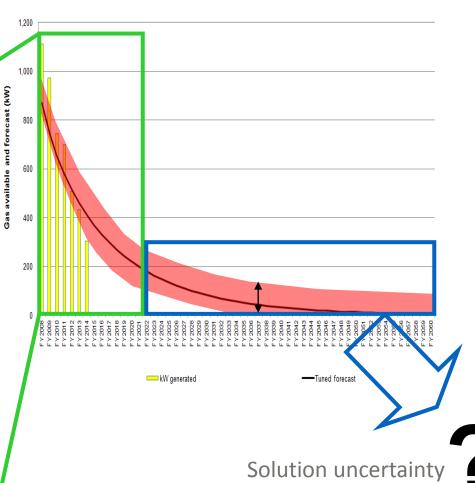
- Legal requirement
- It can all go horribly wrong!



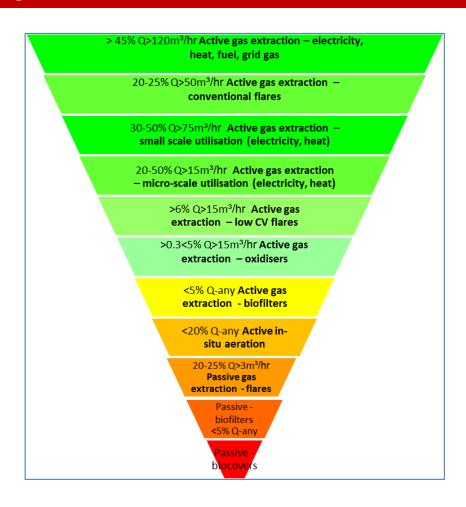
Why bother?

- Climate Change
 - •Methane a major greenhouse gas 25 times GWP of CO₂).
 - •3% of UK greenhouse gas emissions
 - 23,000 Closed Landfills in England and Wales
 - 15% of NCC Carbon emissions2013/14

Base year 2009/2010



Gas curve uncertainty



•ACUMEN – solutions:

- Site characterisation
- Site audit
- Reduction of Greenhouse Gas **Emissions**
- Multiple technological solutions
- Improved gas safety
- •Income generation / cost reduction

•Example site 1:

- •Environmental Permit, mix of containment and D&D
- Incumbent gas contractor has given notice to leave
- ■120m³h @35-40% CH₄
- No persistent gas migration

Solution:

- Sugden End model
- Small spark ignition engine ~ 100kW
- Connection and ROCs
- PPA
- Financially viable

Sugden End spark ignition engine emissions

Determinant	Units	Test 14/05/2015	Test 09/06/2015	EA Limit
Exhaust Gas: Temperature Velocity Flow rate (actual)	°C m s ⁻¹	520 25.3 1607	516 25 1596	n/a n/a n/a
Moisture	%	6.8	8.5	n/a
Oxygen Total VOCs (as carbon)	% v/v mg m ⁻³	5.9 401	6.8	n/a 1000
NOx (as NO ₂)	mg m ⁻³	655	394	500
со	mg m ⁻³	724	697	1400
Engine output	kWe	135	135	n/a
Engine Load	%	90	90	n/a

Example site 2:

- No Environmental Permit, D&D
- No previous gas engine (flare)
- ■45m³h @28-35% CH₄
- No persistent gas migration

Solution:

- Docking model
- Stirling engine ~ 4*7kW step down with gas curve
- Connection to 50kW transformer on site
- •Micro generation = 1.9 ROCs (at present)
- PPA available
- Financially viable

Docking Stirling engine emissions

Determinant	Units	Test 29/09/14	Test 28/10/14	Test 09/12/14	Test 24/02/14	EA Limit
Exhaust Gas: Temperature Velocity Flow rate (actual)	m s-1 m s-1	210.0 9.5 131	233.0 5.6 77	234 5.4 75	146 3.1 43	n/a n/a n/a
Moisture	%	26.8	19.3	19.1	7.7	n/a
Oxygen	96 v/v	8.1	6.0	5.8	9.1	n/a
Total VOCs (as carbon)	mg m ⁻³	545	194	241	53	1000
Oxides of nitrogen (as NO ₂)	mg m ⁻³	46	63	54	127	500
Carbon monoxide	mg m-3	75	277	197	206	1400
Engine output	kW	7.3	6.95	7.5	7.0	
Engine load	%	81	77	83	78	

Example site 3:

- No Environmental Permit, D&D
- No previous gas engine (flare)
- ■2 gas lines, migration line 40m³h @10-14% CH₄ main line 20m³h @30-40% CH₄
- No persistent gas migration

Solution:

- •Mix of Docking and Strumpshaw or Otterspool model
- Stirling engine ~ 2*7kW, Biofilter or Low Cal flare
- Connection to 50kW transformer on site
- •Micro generation = 1.9 ROCs (at present)
- PPA available
- •Financially viable?

Otterspool Low Calorific flare emissions

Determi- nant	Units	Test 1 27/03/14	Test 2 27/03/14	Test 3 01/03/14	Test 4 01/03/14	Test 5 02/05/14	Test 6 08/07/15	EA Limit
Moisture	%	7.1	8.5	2.3	3.4	6.4	5.9	n/a
O ₂	% v/v	10.48	6.8	16.45	5.94	7.97	14.11	n/a
Tempe- rature	°C	922	975	504	894	884	758	1000
VOC (as C)	mg m-a	2.1	0.2	4.9	0.0	1.8	1.8	10
NOx (as NO ₂)	mg m-a	33.6	49.4	66.7	12.3	32.4	16.4	150
со	mg m ⁻³	75.6	20.5	49.8	13.5	21.0	20.3	50
Gas flow rate	m³hr-i	240	240	40	252	164	50	n/a
CH4	%	24.6	24.6	22.0	8.0	14.0	11.0	n/a

Strumpshaw biofilter design

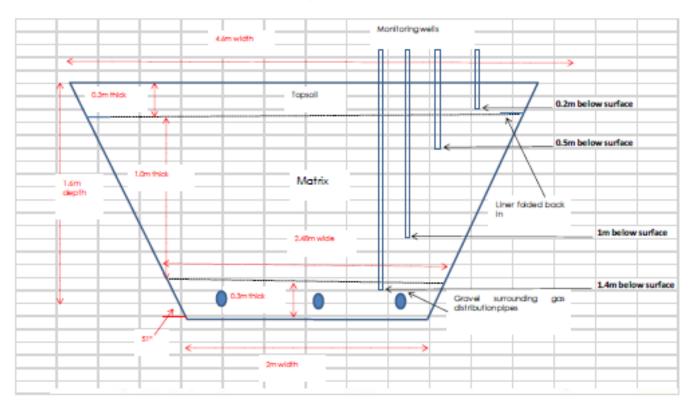


Figure 1 Diagram of biofilter monitoring locations

Strumpshaw biofilter emissions

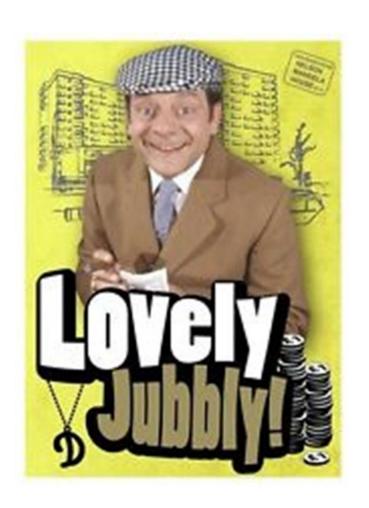
Determinant	Units	In-depth probe	Surface emission tests	Flux sheet	
Inlet Methane Concentration	[% vol]	0.3 - 43			
Gas Flow Rate	[m³h¹]	25 - 90			
Methane removal efficiency	[%]	11 - 90 75 73%			
Average methane removal efficiency	[%]	51% (median 58%)			

- Business case to invest in generation?
 - ■In UK micro generation below 50kW export is 1.9 ROCs eligible.
 - •Including other subsidies 3.5 times higher sale price than wholesale price.
- Other considerations
 - Capital
 - Infrastructure improvements
 - Maintenance and servicing
 - Costs saved electricity used, servicing old equipment
 - •Risk few contractors/investors currently interested!
 - •Risk few proven manufacturers

•Investment options:

- ■Borrow against Public Works Loan Board O&M contract
- Joint venture with tech provider/investor
- Contract out.

	Direct investment	Joint Venture	Contract Out
Pros	Highest income Keep control	Some income	Lowest risk No costs
Cons	Highest risk Continued site costs	Shared risk	Little income



- The Future?
 - Full life solutions
 - Cost effective and cost offset
 - Reducing technology costs?
 - A new industry?
 - Loss of subsidies death of a new industry?

