

Assessing, Capturing and Utilising Methane from Expired and Non-operational landfills

An EU LIFE+ project for 2012-2015

Monitoring gas at closed landfills

Andrew Brunton (GGS)

LANDSS Landfill Aftercare Forum, 21st October 2015

- Demonstrate a technically and economically feasible approach to capturing, utilising and mitigating methane from closed landfill sites
- A significant portion of the project involved carrying out a comprehensive monitoring programme to establish an initial assessment of methane emissions
- Monitoring undertaken during the project aims to encourage the wider take up of new technologies with which to manage methane emissions

Continuous ground-gas monitoring

- Continuous monitoring will provide a quantitative assessment of landfill gas quality and behaviour
- Collection of time series data can lead to a much more accurate characterisation of the ground-gas regime and gas collection efficiency
- Identifying the dominant processes of gas generation and migration

Continuous ground-gas monitoring

Time series assessment tools

TECHNOLOGY LIMITED

Time series assessment tools

Teasdale, C.J., Hall, J.A., Martin, J.P and Manning, D.A.C. Ground gas monitoring: Implications for hydraulic fracturing and CO storage. Environmental Science & Technology 2014, 48, 13610-13616

Purge and recovery tests

Purge and recovery tests

Depth profile monitoring

LIMITED

- Measurement of ground-gas concentration down a borehole
- Can highlight well stratification, stagnant gas and elevated gas concentrations
- 'line of evidence' approach for understanding lateral migration issues

Surface emission survey (SES)

Surface emission survey (SES)

Sep-14

Oct-14 Nov-14 Dec-14

10.00

5.00

Feb-14

Ape-14

Jun-14 Jul-14 Aug-14

Three elements of Q-SES

- the surface walkover survey element
- the closed chamber flux tests (flux box tests) element
- the data processing element

Feb-15

defra Department for Environment Food and Rural Affairs

Model B

Model A

8 8 2 6 8 2 4 10 12 4 6 8 12 0 0 10 6 6 Natural Log CH₄ (Flux mg m² s⁻¹) Natural Log CH $_4$ (Flux mg m 2 s⁻¹) 4 4 2 2 0 0 -2 -2 -4 -4 -6 -6 y = 1.5586x - 8.921 y = 1.6052x - 9.0598 $R^2 = 0.762$ $R^2 = 0.8255$ -8 -8 -10 -10 -12 -12 Natural Log CH₄ (ppmv) Natural Log CH₄ (ppmv)

Band ppm v	n	Max	Min	Range	[x] Median	[y] Geomean	[z] Mean	Stdev	±	±%[x]	±%[y]	±%[z]	
>=10000	5	52.88	10.62	42.26	40.8	31.1	35.8	17.3	7.75	19.0	24.9	21.7	
>=1000<10000	18	10.59	0.00005	10.59	2.97	1.47 1.05	3.14	2.43 1.38 0.34 0.14	0.57 0.17 0.053 0.031	19.3 17.2 20.3 16	39.1 16.3 18.1 28.9	18.3 11.3 12.9 15.7	
>=100<1000	65	6.48	0.13	6.35	0.99		1.52						
≻=50<100	41	1.69	0.022	1.67	0.26	0.29	0.42						
>=25<50	21	0.51	0.00005	0.51	0.19	0.11							
>=10<25	19	1.58	0.01	1.57	0.095	0.074	0.17	0.35	0.08	84	108	47.3	
≻=5≺10	21	0.44	0.00005	0.44	0.026	0.016	0.05	0.09	0.021	77.9	127	41	
≥=2.5<5	17	0.29	0.00005	0.291	0.0011	0.0008	0.03	0.076	0.019	1685	2286.3	64.9	
		19	 attendioration 	C serverence C		0.00000	0,0000	0.0004	0.00000	00	0.0	22.1	
<2.5 -SESflux values f	63 or Mo	0.002 del A (n≕	0.00005 270)	0.002		U.UUUU8	0.0002	0.0004	0.00038	90	90	23.1	
<2.5 -SES flux values f Band ppm v	63 orMo n	0.002 del A (n=: Max	0.00005 270) Min	0.002 Range	(x) Median	[y] Geomean	[z] Mean	Stdev	U.UUU38	90 ±%[x]	90 ±%[y]	23.1 ±%[2	
<2.5 -SES flux values f Band ppm v >=10000	63 or Mo n 5	0.002 del A (n=: Max 52.88	0.00005 270) Min 10.62	0.002 Range 42.26	(x) Median 40.8	U.UUUU8 [y] Geomean 31.1	[z] Mean 35.8	Stdev 17.3	± 7.75	90 ±%[x] 19.0	90 ±%[y] 24.9	± % [2 21.7	
<2.5 -SESflux values Band ppmv >=10000 >=1000<10000	63 or Mo <u>n</u> 5 17	0.002 del A (n≕ Max 52.88 10.59	0.00005 270) <u>Min</u> 10.62 0.697	0.002 Range 42.26 9.895	0.00005 [X] Median 40.8 2.97	(1.00008 [y] Geomean 31.1 2.68	[z] Mean 35.8 3.32	Stdev 17.3 2.37	0.00038 ± 7.75 0.57	90 ±%[x] 19.0 19.4	90 ±%[y] 24.9 21.5	23.1 ±%[z 21.7 17.3	
<2.5 -SESflux valuesf Band ppmv >=10000 >=1000<10000 >=100<1000	63 or Mo 5 17 65	0.002 del A (n=: Max 52.88 10.59 6.48	0.00005 270) <u>Min</u> 10.62 0.697 0.13	0.002 Range 42.26 9.895 6.35	0.00005 [x] Median 40.8 2.97 0.99	1.00008 [y] Geomean 31.1 2.68 1.05	[z] Mean 35.8 3.32 1.52	Stdev 17.3 2.37 1.38	t.00038 ± 7.75 0.57 0.17	90 ±%[x] 19.0 19.4 17.2	90 ±%[y] 24,9 21.5 16.3	23.1 ±%[z 21.7 17.3 11.3	
<2.5 -SESflux valuesf Band ppmv >=10000 >=100<10000 >=100<1000 >=50<100	63 or Mo 5 17 65 41	0.002 del A (n=: 52.88 10.59 6.48 1.69	0.00005 270) 10.62 0.697 0.13 0.022	0.002 Range 42.26 9.895 6.35 1.67	(x) Median 40.8 2.97 0.99 0.26	[y] Geomean 31.1 2.68 1.05 0.29	[z] Mean 35.8 3.32 1.52 0.42	Stdev 17.3 2.37 1.38 0.34	t.00038 ± 7.75 0.57 0.17 0.053	90 ±%[x] 19.0 19.4 17.2 20.3	90 ±%[y] 24.9 21.5 16.3 18.1	23.1 ± % [2 21.7 17.3 11.3 12.9	
<2.5 -SES flux values f Band ppmv >=10000 >=1000<10000 >=50<1000 >=25<50	63 or Mo 5 17 65 41 20	0.002 del A (n=: 52.88 10.59 6.48 1.69 0.51	0.00005 270) 10.62 0.697 0.13 0.022 0.0007	0.002 Range 42.26 9.895 6.35 1.67 0.51	U.UUUUS [X] Median 40.8 2.97 0.99 0.26 0.19	[y] Geomean 31.1 2.68 1.05 0.29 0.16	[2] Mean 35.8 3.32 1.52 0.42 0.2	Stdev 17.3 2.37 1.38 0.34 0.14	t.00038 ± 7.75 0.57 0.17 0.053 0.031	90 ±%[x] 19.0 19.4 17.2 20.3 15.9	90 ±%[y] 24.9 21.5 16.3 18.1 19.6	23.1 ± % [z 21.7 17.3 11.3 12.9 14.8	
<2.5 -SESflux values f Band ppmv >=10000 >=1000<10000 >=100<1000 >=50<100 >=25<50 >=10<25	63 or Mo 5 17 65 41 20 18	0.002 del A (n= 52.88 10.59 6.48 1.69 0.51 0.25	0.00005 270) 10.62 0.697 0.13 0.022 0.0007 0.01	0.002 Range 42.26 9.895 6.35 1.67 0.51 0.24	Image: 0.00005 [x] Median 40.8 2.97 0.99 0.26 0.19 0.081	[y] Geomean 31.1 2.68 1.05 0.29 0.16 0.063	[z] Mean 35.8 3.32 1.52 0.42 0.2 0.091	Stdev 17.3 2.37 1.38 0.34 0.14 0.07	1.00038 ± 7.75 0.57 0.17 0.053 0.031 0.08	90 ±%[x] 19.0 19.4 17.2 20.3 15.9 21.3	90 ±%[y] 24.9 21.5 16.3 18.1 19.6 27.8	23.1 ±%[2 21.7 17.3 11.3 12.9 14.8 19.1	
<2.5 -SESflux valuesf Band ppmv >=1000<10000 >=100<1000 >=50<100 >=25<50 >=10<25 >=5<10	63 or Mo 5 17 65 41 20 18 19	0.002 del A (n= 52.88 10.59 6.48 1.69 0.51 0.25 0.12	0.00005 270) 10.62 0.697 0.13 0.022 0.0007 0.01 0.0007	0.002 Range 42.26 9.895 6.35 1.67 0.51 0.24 0.12	U.UUUUS [x] Median 40.8 2.97 0.99 0.26 0.19 0.081 0.026	U.00008 [y] Geomean 31.1 2.68 1.05 0.29 0.16 0.063 0.018	[z] Mean 35.8 3.32 1.52 0.42 0.2 0.091 0.032	Stdev 17.3 2.37 1.38 0.34 0.14 0.07 0.03	1.00038 ± 7.75 0.57 0.17 0.053 0.031 0.08 0.007	90 ± % [x] 19.0 19.4 17.2 20.3 15.9 21.3 27.8	90 ± % [y] 24.9 21.5 16.3 18.1 19.6 27.8 39.8	23.1 ±%[z 21.7 17.3 11.3 12.9 14.8 19.1 22.7	
<2.5 -SESflux valuesf Band ppmv >=10000 >=1000<10000 >=50<1000 >=25<50 >=10<25 >=5<10 >=2.5<5	63 or Mo 5 17 65 41 20 18 19 14	0.002 del A (n= 52.88 10.59 6.48 1.69 0.51 0.25 0.12 0.016	0.00005 270) Min 10.62 0.697 0.13 0.022 0.0007 0.01 0.0007 0.0007 0.0005	0.002 Range 42.26 9.895 6.35 1.67 0.51 0.24 0.12 0.016	U.UUUUS [x] Median 40.8 2.97 0.99 0.26 0.19 0.081 0.026 0.0006	U.00008 [y] Geomean 31.1 2.68 1.05 0.29 0.16 0.063 0.018 0.0005	[z] Mean 35.8 3.32 1.52 0.42 0.2 0.091 0.032 0.0032	Stdev 17.3 2.37 1.38 0.34 0.14 0.07 0.03 0.005	1.00038 ± 7.75 0.57 0.17 0.053 0.031 0.08 0.007 0.001	90 ± % [x] 19.0 19.4 17.2 20.3 15.9 21.3 27.8 241.3	90 ±%[y] 24.9 21.5 16.3 18.1 19.6 27.8 39.8 309.9	23.1 ± % [2 21.7 17.3 11.3 12.9 14.8 19.1 22.7 42.9	

LIMITED

LIMITED

- Operational and permitted landfill operators to estimate methane losses through their sites' surfaces, perhaps in conjunction with annual compliance walkover surveys or following landfill gas management audits
- Identify, and subsequently verify the remediation of, localised point source features in landfill capping layers
- Local authorities could measure the surface methane emissions from their landfill portfolios, either for inclusion in local authority carbon emission datasets, carbon budgeting or similar exercises

- Measure surface emissions at a sufficiently large number of closed landfill sites to improve the accuracy of what the calculated contribution that closed landfill makes to the overall GHGI
- Periodic performance monitoring of bio-oxidation units. Q-SES could be used to quantify performance (i.e. methane removal efficiency) by measuring fugitive emissions

Date / Time	Biofilter inlet			Closed chamber test survey				Flux sheet						
	CH4:O2	CH₄ kg hr¹	CO₂kg hr¹	CH₄ kg hr 1	±	CO2 kg hr 1	±	CH₄ Re %	CH₄ kg hr¹	CO₂ kg hr¹	CH₄ Re %	Atmospheric Pressure (mBar)	Pressure trend - 3hr/6hr/9hr	
25.02.15 / 15:00	0.54	13.69	28.06	0.71	0.32	4.91	1.97	94.8	#	#	#	1012	0/-1/-5	rising
27.02.15 / 10:00	0.76	13.64	30.23	1.46	0.65	9.50	4.16	89.3	0.70	6.56	94.9	1012	0/-3/-6	rising
22.04.15 / 08:00	1.23	8.71	21.06	2.71	0.31	5.14	0.56	68.9	#	#	#	1033	-1/0/0	stable
22.04.15 / 16:00	1.17	8.32	20.58	2.43	0.48	4.63	0.65	70.8	2.54	6.47	69.5	1030	+1/+3/+3	falling
14.05.15 / 15:00	0.91	4.07	9.23	1.72	0.67	6.39	1.58	57.8	#	#	#	1012	+2/+3/+4	falling
15.05.15 / 08:00	0.62	2.83	7.55	1.44	0.65	8.16	1.91	49.0	#	#	#	1021	-2/-3/-5	rising
23.06.15 / 15:00	0.40	1.19	2.07	0.22*	0.13	1.03*	0.17	81.2	0.19	0.59	84.3	1019	-2/-3/-5	rising
24.06.15 / 10:00	0.43	1.39	2.22	#	#	#	#	#	0.24	0.77	82.9	1019	0/0/+1	stable
24.06.15 / 15:00	0.43	1.39	2.22	1.90	0.64	5.58	1.01	-39.2	0.48	1.04	65.2	1019	0/0/0	stable
25.06.15 / 09:00	0.41	1.10	1.74	#	#	#	#	#	0.48	1.69	56.1	1021	0/-1/-1	stable

denotes no measurement. CH4 Re is methane Removal efficiency in %. *closed chamber test was wind affected. Please note: All atmospheric pressure measurements are from a local metrological station to enable comparisons to be made – site specific measurements are not available for all site visits.

LIMITED

Survey	Calculated flux (kg hr ⁻¹ CH ₄)	Uncertainty (± kg hr ⁻¹ CH ₄)	Calculatedflux (kg hr ⁻¹ CH ₄)	Uncertainty (± kg hr ⁻¹ CH ₄)
DIAL-Nov '14	2.5	0.7	2.5	0.7
Q-SES* – Nov ' 14	0.12*	0.03*	0.28#	0.06#
Q-SES* - Feb '15	0.63*	0.12*	1.83#	0.36#
Q-SES* - June '15	1.75*	0.34*	4.65#	0.90#

* denotes 2.5m² grid squares

denotes 1m² grid squares

Summary

- Both traditional and innovative monitoring techniques have been used throughout the project and have helped characterise the gas regime on demonstration sites
- Offer real benefits in understanding gas generation, migration and emissions at closed and historic landfills
- A monitoring programme can provide a cost-effective way to verify and validate gas behaviour on all aspects of landfill gas management

Questions?

